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The problem considered Is 
mally on a plane boundary 
The problem formulated In 
axial stress-strain curve 

that of a plane plastic wave which Is incident nor- 
which separates two elastic-plastic half-spaces. 
this way Is spatially one-dimensional, and a unl- 
suffices for the description of the phenomena. In , . _ _ _ . 

this article, only assumpslons OS a general nature are made about the proper- 
ties of the stress- strain curve. The reflected and refracted waves, the 
reflection coefficient and its relation to the stress-strain curve are stud- 
led. 

Real media ln which the propagation of large disturbances must be studied 
(soIla. structural elements, etc.) are almost always inhomogeneous. This 
lnhomogenelty may either be characterized by a continuous distribution 02 
appear in form of more or less sharp Interfaces. In the latter cases it Is 
condldered that different media are in contact along some bounding surface. 

When a wave Is Incident on such a sur- 
face, reflection and refraction take 
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D 
place. For plastic waves the study of 
these phenomena Is In its initial stage 
of development. It Is natural that the 
study begin with the case of a plane wave 
Incident normally on a plane interface 
between two media. A particular problem 

I with a plecewise linear stress-strain 
curve Is considered In [l]. 

It Is assumed that the Initial part 
of the (compression) stress-strain curve, 
corresponding to elastic straining, 1s 
a straight line (OC In Flg.1). On this 
segment loading and unloading take place 
along the same curve. In the remainder 
of the stress-strain curve for loading 
it Is assumed only that the branch @m 
Is either everywhere concave upward or 
Is divided by the point E into two 
parts: C?f Is convex upward and m Is 
concave. The curve OCEBD represents a 
monotonously increasing function. As for 
unloading, It is assumed that to the 
right of the point C where the straln- 
lng becomes Inelastic, unloading occurs 
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at 
Rel 

constant density (on a straight line parallel to the axis of ordinates). 
.oading is described by motion of a point upward along BB, up to the point 

B and, for further loading, along the branch BD Each of the half-spaces 
in contact is described by a similar stress-straln'curve; the two curves 
differ only quantitatively. As in [2], It Is assumed that the incident wave 
Is caused by a shock loading which decreases monotonously from its initial 
value (typical of the properties of a wave due to an explosion). The lnci- 
dent wave h8s a shock front which propagates into undisturbed medium, the 
particles behind the shock front undergoing unloading. This type of Incident 
wave Is possible in two cases: 

1. The incident wave Is elastic; 
sponds to the stress at the shock front. 

a point on the segment OC corre- 

2. The incident wave Is plastic; a point on the segment D,D(u,> a*) 
corresponds to the stress at the shock front. Points on a segment parallel 
to the axis of ordinates correspond to stresses at particles behind the front. 

Under certain conditions the character of the incident wave which has s 
been described leads to similar reflected and refracted (transmitted) waves. 
Here the following cases are possible: 

TAET.lEl 

Incident wave Reflected wave Refracted wave 

1 Plastic Plastic Plastic 

2 11 " Elastic 

3 Elastic I, Plastic 

4 1, I, Elastic 

5 II Elastic Plastic 

6 ,, 11 Elastic 

Case 6 is well lmown In the theory of elasticity. In this paper only 
cases 1 and 2 are considered. Cases 3, 4 and 5 may be ex8mined similarly. 
The problem consists of giving qusntltatlve descriptions of the incident, 
reflected and refracted waves (and, in particular, of finding coefficients 
of reflectlon and refraatlon) 8nd also of the conditions for which the spe- 
cial C8SeS mentioned above are realized. 

1. In the following we shall denote the stress a, and the strain E, by 

a and E, respectively. Compressive stresses and compressive strains will 

be considered positive. Let the stress-strain curve for the half-space In 

which the incident wave propagates be specified by the relation 

u =UOf(&), ITo > 0 

We shall examine the problem ln the Lagranglan coordinates h , t , so 

that 
5 (h, t) = h + u (h, t) 

where u Is the displaaement 8nd x Is the Eulerian coordinate. In the 

plane h. I 0 an external loading e = u,(t) Is given, with u. (0) s no #.O; 
the function c,,(t) is monotonously decreasing. If e. Is sufficiently 

large, the particles behind the shock front will undergo plastic unloading 

at constant density. In this case we have Equations 

(1.1) 

where co Is the Initial density, p is the density of particles behind the 

front of the incident wave (p > cc) . From (1.1) we obtain 



h 

x (h, E) = \ s + 20 (q, v (h, t> = g = ZOI (t> (1.2) 
0 

Q (h, t> = - POZO” (q h + Qo (t) (1.3) 
At the shock front (starred quantities will refer t0 values at the shock 

front) 

Eliminating v+ and c+ from (1.3) and (1.4) after an integration, we 

obtain f 

tz*h.+h*’ = 
s 

‘e = F (t) 

0 

(1.4) 

(13) 

Comparing the second of Equations (1.4) with the stress-strain law, we 

have 
poe*h*‘a = 07 (E*>, Go f (Ed h ‘2=--- * PO E* 

If the point representing 

ment DpD (Fig.l), then 

the stress at the shock front lies on the seg- 

(1.6) 

This means that 
d f (e) --= 

de e 
I.e. that the function y(c)/c Is monotonously Increasing. Therefore, 

Equation (1.6) has a unique solution for E* , and there exists a monoton- 

ously Increasing function cp(c+) 

8% = cp @*') 

which Is the solution of Equation (1.6). 

Fig. 2 

h 

As a result, we obtain a first-order 

differential equation to determine the 

Lagrsnglan coordinate h*(t) of the 

front 

h,‘cp (h,‘) h, = \y (1.7) 
0 

which Is to be solved with the Initial 

condition h*(O) - 0 . 

2. Let us examine the reflected wave, assuming that it h?s a shock front 

with an associated stress that Is Increased as a result of the reflection. 

The condition for this to occur is that the second medium be "stiffer" than 

the first. The precise meaning of this requirement will be made clear later; 

We shall Indicate quantities which refer to the reflected wave by the sub- 

script 1. The reflected wave is constructed in the same way as in [2] In 

which a special form of the stress-strain law was assumed. 

To avoid repetition we shall not enlarge on the details here, referring 

the reader to the reference cited. 

The location of the front at some time after the reflection Is shown in 



804 N.V.2volinfikli and ll.V.Rykcv 

Flg.2. Here h, denotes the distance from the.lnltlal plane to the inter- 

face, h+ Is the distance to the front of the Incident wave If this wave 

continued tv propagate without encountering the Interface. For the reflected 
wave, we have, just as for the Incident wave, 

%(h, t) = - P&'(q(h - 12") + %(h", t) 

(2.1) 

At the reflected shock front, (see [2]) (2.2) 

VI* - v = - l%(h*) - 8 (h*)l h*', @I - 61s = -po I%* (L) -- WI&F 

where o,(h) IS the stress which existed at the particle with the coordinate 

h when the Incident wave passed It. 

For stress at the shock front, the stress-strain law has the form 

51, = GO! [&l(hLJ] (2.3) 

Eliminating cl,, and cl+ from Equations (2.2) and (2.3), we obtain the 

relation 
1 

f [s (hl,)lj{& @1*_) 11 - P (e (4 ~~*'jE @1*) h,*‘)l) = 1 -P gg$& 

i 
$ _ 1 - 2’1* (q ’ 

__- 
1 

(2 A) 

1’ (t) 
Since the particle velocities In the reflected wave do not depend on the 

coordinate, they are the same at the shock front as at the Interface sepa- 

rating the media. Denoting the velocity of the points of the Interface by 

V(t) , we have us - V(t). Equation (2.4) contains the mown function 

71&t) and V(t) . This equation Is a nonlinear, first-order differential 

equation In h,,(t) (the generalization of Equation (3.9) of [2]. Assuming 

that 

which IS prompted by physical considerations, we can replace Equation (2.4) 

by an approximate one found by expanding the function fl‘c(%,)- 61 IntO a 
power series and retaining two terms. We then obtain Equation 

dh, - dh, =----- 
(f [a @,)I / E (h)f’p (1’ [E h)lfi2 

(2.5) 

We note that in this approximation the dependence on V(t) has dropped 

out of the equation, which can be explained by the comparatively small effect 

of the velocity of the points of the interface on the propagation of the 

shock front of the reflected wave. We shall Investigate the case 

+-=g f’ (E), f’ [E (It*)1 < f' t& Vh*)l, 11,’ < 111*’ 

This means that the reflected wave front Is propagated at a higher velo- 

city than the ( fictitious ) Incident wave front. In particular, this Is also 

valid at the Instant the reflection begins (kc- )11+= ho) . It should be 
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remarked that we have denoted by “reflected wave* all motions which appear 

as a result of a reflection, not the part which Is added on to the Incident 

wave as Is usual In the linear theory of elasticity and in acoustics. 

o 3. In order to solve the problem completely, It Is necessary to formulate 

a second equation containing the unknown function v(t) . To do this we must 

consider the wave which passes into the second medium (the refracted wave). 

We shall examine the case in which the refracted wave is elastic (case 2). 

We then have 

$(h,Q =F(a,t--+t-h,), u, (h, t) = a22p2F’ (a& - h + hd 

u, (h, t) = azF’ (a& - h + ho) (3.1) 
On the plane of contact the conditions of :ont;lnuli;y must be satisfied. 

Q (4 = 02 v&l, 0 = v (9, (Jl &I, t) = 02 (~07 4 (3.2) 

These two conditions and the second nelatlon of (2.2) enable us to ellmi- 

nate the function F and the stress al+ ; we obtain the equation for r/(t) 

P (&* - h,) V’ it> - (a,p, - P&h,,‘) v (t> = PO%’ - (38 (3.3) 
This Is a linear, first-order differential equation. At the Instant of 

reflection the coefficient p0 (h,,- h,,) of the derivative goes to zero, This 

causes the general solution of the homogeneous equation to be unbounded. For 

if we take the instant when the wave strikes the Interface as t - 0 , then 

we have for small t > 0 
h - h, = - a,t + . . . 

- POW (0 - (U2P2 LPO) v (Q = - PO” (0) a, - (Jb + . . 

We shall seek a solution in the form 

V (t) = ct= + v, + . . . (3.4) 

where C, V0 and a are constants and the first term on the right-hand side 

is the general solution of the homogeneous equation. We obtain the values 

a=- 1 arpa -- 
=lPo ’ 

V o = Pov (0) al + ‘% 
QPI + alp0 

(3.5) 
for c and va . 

Since a < 0 , the general solution Is unbounded as t - 0 , and the con- 

dition of boundedness of the solution as t + 0 must be Imposed as the lnl- 
tial condition in the solution of (3.3). The constant V, is the initial 

value of the velocity of the points of the Interface, which 1s expressed In 

terms of the as yet unknown Initial velocity Q 1 of the reflected wave. (If 
the wave Is Incident on an obstacle, the Initial value of velocity of the 
obstacle 1s equal to zero). 

4. Let us Investigate In greater detail the special case ln which the 

Incident wave has the form of a step. This case la all the more interesting 
because It describes asymptotically for the Initial stages the phenomenon of 
reflection for an Incident shock wave a general form. If the lncldent wave 
has the form of a step the analysis of the situation la simplified conslder- 
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ably since the parameters of the wave behind the front are constant. Thus, 
in the incident wave, behlnd the front 

E (h) = 80, v (t) = VI), cb = o,, (0) = &,2i& a >o, h,' (t) = a 

Let us try to satisfy all the conditions of the problem by assuming that 

the parameters are also constant in both the reflected and refracted waves 

El(h) = El, 211 (0 = Vl, h1*' (6 = - a,, aI> 0 

h,, - h, = - a,t 

82 (h t> = 82, v2 (h, t) = 212, h2*' (t) -= aa, a2 > 0 

Equation (2.4) then assumes the form 

+o (I+ P2)] =f(Eo){l + By, p=l--f= const (4.1) 

In order to solve this equation approximately, we set em/a,= c 

We may then rewrite Equation (4.1) as 

a1 2 

( ) 
-= f hl+ %a - f kd 

a of 6%) 

The expansion of the right-hand side in powers of oeO permits us to 

represent the relation between al/a and 6 In the following parametric 

form: (4.2) 

In Equatlons(4.2) the quantity c plays the role of a parameter. The 

retention of just the first term of the series yields the same result as 

Equation (2.5), namely 

-+(J&--)'!: 
(4.3) 

We now return to Equation (3.4). For a bounded solution In the form of 

a constant we obtain 

vo = 01, + PoVoal 
z 

TOP0 (a + al) 

azpa + alp, U2P2 + POQ 
(4.4) 

This value of the interface velocity allows us to compute the stress at 

Interface in the reflected wave 

52(h), t) = P2wJz = 
Po*‘o= (1 + =I / a) 

1 + POQ I p2a2 
(4.5) 

According to condition (3.2), the stress in the refracted wave has the 

same value. 

It is useful to Introduce the concept of the reflection coefficient (and 

the refraction coefficient), where we mean by this the ratio of the stress 

in the refleated (refracted) wave to the stress In the incident wave. For 

a step wave this ratio does not depend on time; for an arbitrary wave It 

will be referred to the Instant of Incidence (t - 0) and should be computed 

by the sams formula as for the step wave (assuming that the incident wave is 

a ahock wave). We denote the reflection (refraction) coefficient by K . 
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Then 
jy = 01 (ho* t) l-!-al/a ----= 

all 1 + Peal / f-w (4.6) 

This equation shows that the 

on the ratio “,/a . Likewise, 

reflection coefficient depends significantly 

K depends on the ratio ap/a . In partlcu- 

If the second medium la infinitely stiff 

=), the phenomenon reduces to the reflection 

an immovable wall and the reflection coeffl- 

L-f4 
clent ln this case assumes the value 

K =I +a,/a (4.7) 

a 

The ratio a,/a Is determlned from the streae- 

strain curve according to Equation (4.3) and can 

be Interpreted geometrically. As a matter of 
a, fact, this ratio can be expressed as c : 

Fig. 3 
al f’ (eo) lm a1 
-=~,)/e,=‘;;nia a 

where the angles a and a1 are shown ln Flg.3. 

The dependenae of the reflection coefficient on the intensity of the 
incident wave Is also determined by the stress-strain law. Ler us give some 
examples. 

Let the part of the stress-strain curve under consideration be expre& 
sed’&alytlcally .by the power relation Y(C) - en. Then 

al/a = v/n, K=l+l/n 

In this case the reflection coefficient does not depend on the intensity 
of the incident wave, as was noted ln [ 23 . 

2. A different result Is obtained for the case when for A/B < e 

f(e)=Be-‘4, B>O, A>O, K= I$- (tl-B&)“a 
As we see, the reflection coefficient decreases with increasing Intensity 

of the Incident wave. 

3. Flnelly, let 

f(e)=(sO~sJP, o<e<e’, m>R P>O 

Then 

X=‘+(e”,;_-l)“* 

and the reflection coefficient increases with Increasing intensity of the 
Incident wave. 

In conclusion, the conditions for the realization of the case of reflec- 

tion which has been considered should be noted. Besides the condition that 

the incident disturbance be a shock wave, It Is also necessary that the re- 
fracted wave ln the elastic range, I.e. that the stress In the second medium 
at the interface 

i-l-alla 
‘Ovoa 1+ pool / pzaa 

be less than the corresponding elastic llmlt, and that the reflected wave be 
stronger than the incident, I .e . K Oc= 1 . This last condition leads to the 
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inequalIty %h z= cpb , which means WaLthe acoustic lmpedence of the 

elastic medium must be greater than the 'effective" acoustic lmpedence of 

the first medium. 

5. we now Proceed to she case In which the refracted wave 1s plastic 
(case 1). Equation (2.4) remains valid In this case because the properties 

of the second mdlum enter into It only through the value of the velocity 

V(t) of the points of the interface, and this velocity occurs ln Equation 
(2.4) as an unknown quantity. In contrast to the preceding, Equation (3.3) 
does undergo a change. 

For the refracted wave, just as for the Incident wave In Section 1, we 
obtain 

c2 (h, 4 = - p&h - hll) + 02 (ho, t) (5.1) 

For the reflected wave, we have 

01 (h, t) = - PO",' (h - h,) -t- 01 (h,, t) (5.2) 
We then obtain the values of these stresses at the reflected and refracted 

shock fronts, respectively 

~2 @2,7 t) = - ~2~2 (4, - hJ + *z h 9 = Pzv2&2, (5.3) 

~A*,0 = - Plv,‘(L - h,) + I, = PO%&,*’ + ub - pol-‘hl, (5.4) 

On the lntreface between the media (h - h,,) , the boundary conditions 

~1 (4, t) = ~2 (ho, t), o1 (h,, t) = ‘T, (h,, tl (5.51 

must hold. 

Since the functions U, and va do not depend upon h , the first condl- 

tlon of (5 5) becomes the relation 

211 (t) = V$ (t) = Tr (t) (5.6) 

where V(t) Is the velocity of the particles of the Interface. 

Taking (5.6) and (5.5) Into account, and subtracting (5.4) from (5.3),we 

obtain the following differential equation for v(t): (5.7) 

[p2 (h,, - h,) - po (hi, - ho)1 -V’ (t) + (p&2*’ - P&I,‘) I’ (t> =(3b - PO%*’ 

This equation appears ln the new problem In place of Equation (3.3). 

For small positive values of time, we have 

h,,-ho==-u$+..., h,,-&=a&+... 

and, under this condition, Equation (5.7) may be rewritten as 

(pea, + pea,) W'(t) -1 (p+zz + WI) J'(t) = 5b - povh,, 

The corresonding homogeneous equation has the general solution V(t) - et-l. 

The requirement of boundedness of the solution of Equation (5.7) In the vlcl- 

nlty of t I) 0 then forces us to set c - 0 . 

In order to solve the problem one more equation must be formulated. At 

the front of the refracted wave which propagates, as assumed, lnto an undls- 

turbed medium, the conditions 
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hold . From this we find 
6% E2* = - 

p&z*‘= 

or, taking account of the stress-strain relation In the second medium 

02 = c7.272 (%), we finally obtain 

h 12 QzO f2 @z*) 
2* =---- 

Pz @* 
Replaolng ep+ In accordance with the relatlon 

(5.8) 

7% v (t) 
&a* = 7 = h 

h2x 2* 

we obtain Equation 

f-2 (V ! ha*‘) _ pzhf2 
V / b’ 

o 
62 (5.9) 

If the function which is the inverse of EF1[f’(&)J2 z 7, is denoted by 

E - s(q), Equation (5.9) can be replaced by the relation 

V 
hz’* = %i (5 ha*(?) (5.10) 

The problem formulated at the beginning of Section 5 then reduces to the 

solution of three simultaneous equatlons (2.4), (5.7) and (5.9) or (5.10). 

These equations contain unknown functions of time h,+, h,,* and v . For a 

general stress-strain law it 18 necessary to resort to numerical solution 

preceded by a qualitative Investigation of the equatlons. Equations (2.4) 

can, of course, be replaced here also by the approximation of Equation (2.5). 

We shall dwell ln some detail on the special case In which the Incident 
wave has the form of a step. In this case the reflected and refracted waves 
will also have that same shape. Retaining the notation of Section 4, we 
obtain three equations to find the three -own constants % ) a,, and v, 

f [so (1 + p fil = f (so) (1 + p +) , v, = p;;;;+:2;:) , fe lVo la2) = TS 
V0/4 (5.11) 

where 

p=i-2, ‘=($)“*(F)‘“, UC-($,” f-0 (5.12) 

The first of Equations (5.11) may be replaced by the simpler approximate 
one, Equation (4.3). We obtain the previous Formula (4.6) for the reflection 
coefficient, but now the constant Q* la not given beforehand. In order to 
determine this constant we u8e the second of Equations (5.11). We then ob- 
tain the relation 

(5.13) 

the left-hand side of whlah decreases monotonously with a,, while the rlght- 
hand side Increases monotonously. Therefore, Equation (5.13) has a unique 
solution which determines the velocity of the refracted wave front. 

We shall now explain how the plastic properties of the medium affect the 
reflection. In order to do this we shall compare a reflection from an 
ideally,elastic medium, ln which the velocity of longitudinal waves is 
(US0 / P2) 4 with a reflection from a corresponding plastic medium In which 
the phenomena Proceed as prescribed under case 1 in Table 1. Here the stres- 
ses in the shock wave are described by a portion of the stress-strain curve 
for which 4~ (0, 
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where t(e) Is a positive function. Therefore, 

h,;> (‘$,“’ 
Equation (4.6) shows that ln passing from an Ideally elastic medium to a 

plastic one ln which reflection occurs as ln caBe 1, the reflection coeffl- 
cient Increases. Finally It Is neceseary to show that dase 1 can be realized. 
It ddes apply If the following three Inequalities hold: 

o* >o*, (Jz* >a,*, K>1 

where a+ Is the stress correapondlng to the point D, (Fig.l), a,* + the 
corres ndlng stress for the second medium. 

p" 
Written out ln detail for step 

waves and this 1s sufficient), these Inequalities have the form 

PouOa > a*, O’oa, = PouoaK > (JZ*, p0a < Paa2 

The first Inequality requires that the incident wave be strong enough, 
whichmay &kWwB be assumed. The second inequality, when taken togatherwlth 
the third, reduces to the B~IIBZ thing. It rema&nB to show that the third 
Inequality can alwaye be Batiefied for any strong incident wave. In proving 
this Btatement,we shall limit ourselves to the cry $n which the curve of 
the function yap(z) has a vertical asymptote c- t andthat po>po. ?en the 
cumre of the function E I Q(T)) has the horizontal asyn@tote E I e , with 
0 < cp$C e*. 

Equation (5.13) can be rewritten as 

Pea +Poal pea PB 1 --a---- 
‘pa 

Pa 
p2a2 + p0a1 maa PO 80 ( > 

gi- a2 

Let uB.eBsuIpe that there 1s a sufflolently strong incident wave for which 
Pp),P$+ Then the lef't~hand side of the equation turns out to be greater 
than unity, while the right-m Bide CM be approximsted by the number 
c*/e, and 08n be arde Bzwiller thBn unity. 

These cnasideratione BhOw that aase 1 is definitely the actual one for a 
sufflolently Intense in&dent wave. 
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